8,937 research outputs found

    Fabrication and test of digital output interface devices for gas turbine electronic controls

    Get PDF
    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration

    Analysis and design of digital output interface devices for gas turbine electronic controls

    Get PDF
    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed

    Comparative assessment of out-of-core nuclear thermionic power systems

    Get PDF
    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds

    Light particle spectra from 35 MeV/nucleon 12C-induced reactions on 197Au

    Get PDF
    Energy spectra for p, d, t, 3He, 4He, and 6He from the reaction 12C+197Au at 35 MeV/nucleon are presented. A common intermediate rapidity source is identified using a moving source fit to the spectra that yields cross sections which are compared to analogous data at other bombarding energies and to several different models. The excitation function of the composite to proton ratios is compared with quantum statistical, hydrodynamic, and thermal models

    Frontiers of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    Full text link
    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive "Super Earth" terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.Comment: Accepted to Physics of Plasmas special issue. Review from HEDP/HEDLA-08, April 12-15, 200

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    Archeological 3D Mapping: The Structure from Motion Revolution

    Get PDF
    Mapping is a critical aspect of systematic documentation no matter where archaeologists work. From hand-drawn maps of excavation units to maps created with Total Data Stations or LiDAR scanning, today’s archaeologists have a suite of mapping techniques and technologies to choose from when documenting a site. Typically, spectacular sites often receive high resolution mapping, whereas everyday sites rarely do. Recently, however, a revolutionary technology and technique has been created that can produce highly accurate and precise three-dimensional maps and orthophotos of archaeological sites, features, and profiles at a fraction of the cost and time of LiDAR and intensive TDS mapping: Structure from Motion (SfM). SfM is a new digital photography processing technique for capturing highly detailed, three-dimensional (3D) data from almost any surface using digital cameras. This article introduces the various platforms SfM photographs can be collected from (UAV, kites, balloons, poles, and groundbased) and provides examples of different types of data SfM can provide. The Structure from Motion Revolution is unfolding across the globe at a rapid pace, and we encourage archaeologists to take advantage of this new recording method

    Cotunneling thermopower of single electron transistors

    Full text link
    We study the thermopower of a quantum dot weakly coupled to two reservoirs by tunnel junctions. At low temperatures the transport through the dot is suppressed by charging effects (Coulomb blockade). As a result the thermopower shows an oscillatory dependence on the gate voltage. We study this dependence in the limit of low temperatures where the transport through the dot is dominated by the processes of inelastic cotunneling. We also obtain a crossover formula for intermediate temperatures which connects our cotunneling results to the known sawtooth behavior in the sequential tunneling regime. As the temperature is lowered, the amplitude of thermopower oscillations increases, and their shape changes qualitatively.Comment: 9 pages, including 4 figure
    corecore